
Introduction Background HPX Integration Experiments Conclusion

Examining MPI and its Extensions for Asynchronous

Multithreaded Communication

Jiakun Yan1 Marc Snir1 Yanfei Guo2

EuroMPI/USA 2025

1University of Illinois Urbana�Champaign
2Argonne National Laboratory

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 1



Introduction



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

BSP and MPI Legacy

� MPI initially designed in a world where

� Most processors are single-core.

� Most applications are BSP.

� Initial MPI implementations:

� Focus on single-threaded execution.

� Optimized for coarse-grained communication.

� Modern workloads and architectures are evolving

beyond these assumptions.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 2



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

BSP and MPI Legacy

� MPI initially designed in a world where

� Most processors are single-core.

� Most applications are BSP.

� Initial MPI implementations:

� Focus on single-threaded execution.

� Optimized for coarse-grained communication.

� Modern workloads and architectures are evolving

beyond these assumptions.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 2



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

BSP and MPI Legacy

� MPI initially designed in a world where

� Most processors are single-core.

� Most applications are BSP.

� Initial MPI implementations:

� Focus on single-threaded execution.

� Optimized for coarse-grained communication.

� Modern workloads and architectures are evolving

beyond these assumptions.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 2



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

HPC Trends and AMTs

� Architectures are getting more complex.

� Modern nodes: 100+ CPU cores, 4�8 GPUs.

� Applications are evolving towards irregularity.

� Adaptive mesh re�nement, sparse data structures, etc.

� New programming models emerge to address these trends.
� We focus on the Asynchronous Many-Task (AMT) model.

� Task oversubscription, dynamic scheduling, communication overlap.

� Charm++, Legion, HPX, PaRSEC, StarPU, etc.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 3



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

HPC Trends and AMTs

� Architectures are getting more complex.

� Modern nodes: 100+ CPU cores, 4�8 GPUs.

� Applications are evolving towards irregularity.

� Adaptive mesh re�nement, sparse data structures, etc.

� New programming models emerge to address these trends.
� We focus on the Asynchronous Many-Task (AMT) model.

� Task oversubscription, dynamic scheduling, communication overlap.

� Charm++, Legion, HPX, PaRSEC, StarPU, etc.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 3



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

HPC Trends and AMTs

� Architectures are getting more complex.

� Modern nodes: 100+ CPU cores, 4�8 GPUs.

� Applications are evolving towards irregularity.

� Adaptive mesh re�nement, sparse data structures, etc.

� New programming models emerge to address these trends.
� We focus on the Asynchronous Many-Task (AMT) model.

� Task oversubscription, dynamic scheduling, communication overlap.

� Charm++, Legion, HPX, PaRSEC, StarPU, etc.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 3



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

AMT Communication Characteristics

� AMTs exhibit distinct communication patterns:

� Fine-grained, point-to-point communication.

� Many concurrent outstanding operations.

� Frequent unexpected messages.

� Multiple threads initiate and complete

communication.

� MPI has introduced extensions to better support

these patterns.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 4



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

AMT Communication Characteristics

� AMTs exhibit distinct communication patterns:

� Fine-grained, point-to-point communication.

� Many concurrent outstanding operations.

� Frequent unexpected messages.

� Multiple threads initiate and complete

communication.

� MPI has introduced extensions to better support

these patterns.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 4



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

AMT Communication Characteristics

� AMTs exhibit distinct communication patterns:

� Fine-grained, point-to-point communication.

� Many concurrent outstanding operations.

� Frequent unexpected messages.

� Multiple threads initiate and complete

communication.

� MPI has introduced extensions to better support

these patterns.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 4



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

AMT Communication Characteristics

� AMTs exhibit distinct communication patterns:

� Fine-grained, point-to-point communication.

� Many concurrent outstanding operations.

� Frequent unexpected messages.

� Multiple threads initiate and complete

communication.

� MPI has introduced extensions to better support

these patterns.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 4



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

AMT Communication Characteristics

� AMTs exhibit distinct communication patterns:

� Fine-grained, point-to-point communication.

� Many concurrent outstanding operations.

� Frequent unexpected messages.

� Multiple threads initiate and complete

communication.

� MPI has introduced extensions to better support

these patterns.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 4



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

AMT Communication Characteristics

� AMTs exhibit distinct communication patterns:

� Fine-grained, point-to-point communication.

� Many concurrent outstanding operations.

� Frequent unexpected messages.

� Multiple threads initiate and complete

communication.

� MPI has introduced extensions to better support

these patterns.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 4



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

Goals

� Evaluate how well MPI and recent extensions support AMT communication.

� Using MPI-level microbenchmarks and AMT-level benchmarks.

� Focus on two key MPI extensions:

� Virtual Communication Interfaces (VCIs).

� Continuations.

� Focus on MPICH and HPX.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 5



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

Goals

� Evaluate how well MPI and recent extensions support AMT communication.

� Using MPI-level microbenchmarks and AMT-level benchmarks.

� Focus on two key MPI extensions:

� Virtual Communication Interfaces (VCIs).

� Continuations.

� Focus on MPICH and HPX.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 5



Introduction Background HPX Integration Experiments Conclusion Motivation Goals

Goals

� Evaluate how well MPI and recent extensions support AMT communication.

� Using MPI-level microbenchmarks and AMT-level benchmarks.

� Focus on two key MPI extensions:

� Virtual Communication Interfaces (VCIs).

� Continuations.

� Focus on MPICH and HPX.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 5



Background



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

MPI Threading Model

� We focus on MPI_THREAD_MULTIPLE.

� Multiple threads can call MPI concurrently.

� However, thread-safety != thread e�ciency.

� Common implementations serialize communication calls with coarse-grained

locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 6



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

MPI Threading Model

� We focus on MPI_THREAD_MULTIPLE.

� Multiple threads can call MPI concurrently.

� However, thread-safety != thread e�ciency.

� Common implementations serialize communication calls with coarse-grained

locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 6



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

Virtual Communication Interface (VCI) [0]

� Replicates MPI internal resources per VCI.

� Typically via separate MPI_Comm.

� Each VCI is protected by its own spinlock.

� Enables parallelism across VCIs.

� Common advice: one VCI-enabled
communicator per thread.

� We will revisit this advice later.

� Hybrid progress strategy:

� By default, one global progress for every 255

local progress.

T0 T1 T2 T3

R

(a) Default Case

T0 T1 T2 T3

R0 R1 R2 R3

(b) With Multiple VCIs

[0] Zambre et al., "How I learned to stop worrying about user-visible endpoints and love MPI." ICS'20.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 7



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

Virtual Communication Interface (VCI) [0]

� Replicates MPI internal resources per VCI.

� Typically via separate MPI_Comm.

� Each VCI is protected by its own spinlock.

� Enables parallelism across VCIs.

� Common advice: one VCI-enabled
communicator per thread.

� We will revisit this advice later.

� Hybrid progress strategy:

� By default, one global progress for every 255

local progress.

T0 T1 T2 T3

R

(a) Default Case

T0 T1 T2 T3

R0 R1 R2 R3

(b) With Multiple VCIs

[0] Zambre et al., "How I learned to stop worrying about user-visible endpoints and love MPI." ICS'20.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 7



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

Virtual Communication Interface (VCI) [0]

� Replicates MPI internal resources per VCI.

� Typically via separate MPI_Comm.

� Each VCI is protected by its own spinlock.

� Enables parallelism across VCIs.

� Common advice: one VCI-enabled
communicator per thread.

� We will revisit this advice later.

� Hybrid progress strategy:

� By default, one global progress for every 255

local progress.

T0 T1 T2 T3

R

(a) Default Case

T0 T1 T2 T3

R0 R1 R2 R3

(b) With Multiple VCIs

[0] Zambre et al., "How I learned to stop worrying about user-visible endpoints and love MPI." ICS'20.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 7



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

Virtual Communication Interface (VCI) [0]

� Replicates MPI internal resources per VCI.

� Typically via separate MPI_Comm.

� Each VCI is protected by its own spinlock.

� Enables parallelism across VCIs.

� Common advice: one VCI-enabled
communicator per thread.

� We will revisit this advice later.

� Hybrid progress strategy:

� By default, one global progress for every 255

local progress.

T0 T1 T2 T3

R

(a) Default Case

T0 T1 T2 T3

R0 R1 R2 R3

(b) With Multiple VCIs

[0] Zambre et al., "How I learned to stop worrying about user-visible endpoints and love MPI." ICS'20.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 7



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

MPI Continuation [0]

� Callback-based completion mechanism.

� Reduces need for polling many requests.

� Introduces a continuation request object:

� Groups requests with callbacks.

� Tested to drive progress and manage

callback execution.

� MPICH extension allows bypassing the

continuation request

(MPI_REQUEST_NULL) to reduce overhead.

1 int complete_cb(int rc, void *user_data);

2

3 MPI_Request cont_req;

4 MPIX_Continue_init (..., &cont_req);

5 MPI_Start (& cont_req);

6 // ...

7 MPI_Request op_req;

8 MPI_Irecv (..., &op_req);

9 MPIX_Continue (&op_req , &complete_cb ,

user_data , 0, MPI_STATUS_IGNORE ,

cont_req);

10 // ...

11 int is_done = 0;

12 MPI_Test (&cont_req , &is_done ,

MPI_STATUS_IGNORE);

13 // ...

14 MPI_Request_free (& cont_req);

[0] Schuchart et al. "Callback-based completion noti�cation using MPI Continuations." Parallel

Computing (2021).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 8



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

MPI Continuation [0]

� Callback-based completion mechanism.

� Reduces need for polling many requests.

� Introduces a continuation request object:

� Groups requests with callbacks.

� Tested to drive progress and manage

callback execution.

� MPICH extension allows bypassing the

continuation request

(MPI_REQUEST_NULL) to reduce overhead.

1 int complete_cb(int rc, void *user_data);

2

3 MPI_Request cont_req;

4 MPIX_Continue_init (..., &cont_req);

5 MPI_Start (& cont_req);

6 // ...

7 MPI_Request op_req;

8 MPI_Irecv (..., &op_req);

9 MPIX_Continue (&op_req , &complete_cb ,

user_data , 0, MPI_STATUS_IGNORE ,

cont_req);

10 // ...

11 int is_done = 0;

12 MPI_Test (&cont_req , &is_done ,

MPI_STATUS_IGNORE);

13 // ...

14 MPI_Request_free (& cont_req);

[0] Schuchart et al. "Callback-based completion noti�cation using MPI Continuations." Parallel

Computing (2021).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 8



Introduction Background HPX Integration Experiments Conclusion Threading VCI Continuation

MPI Continuation [0]

� Callback-based completion mechanism.

� Reduces need for polling many requests.

� Introduces a continuation request object:

� Groups requests with callbacks.

� Tested to drive progress and manage

callback execution.

� MPICH extension allows bypassing the

continuation request

(MPI_REQUEST_NULL) to reduce overhead.

1 int complete_cb(int rc, void *user_data);

2

3 MPI_Request cont_req;

4 MPIX_Continue_init (..., &cont_req);

5 MPI_Start (& cont_req);

6 // ...

7 MPI_Request op_req;

8 MPI_Irecv (..., &op_req);

9 MPIX_Continue (&op_req , &complete_cb ,

user_data , 0, MPI_STATUS_IGNORE ,

cont_req);

10 // ...

11 int is_done = 0;

12 MPI_Test (&cont_req , &is_done ,

MPI_STATUS_IGNORE);

13 // ...

14 MPI_Request_free (& cont_req);

[0] Schuchart et al. "Callback-based completion noti�cation using MPI Continuations." Parallel

Computing (2021).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 8



HPX Integration



Introduction Background HPX Integration Experiments Conclusion Overview Design

HPX Communication Stack Overview

� HPX Application Interface (Simpli�ed).

� An actor model.

� Any process can invoke arbitrary actions on

any other process.

� Upper Communication layer.

� Handles serialization, aggregation, etc.

� Parcelport layer (main focus).

� Actual send the parcel (serialized action

metadata and arguments) to the target rank.

� A parcel = one or multiple bu�ers.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 9



Introduction Background HPX Integration Experiments Conclusion Overview Design

HPX Communication Stack Overview

� HPX Application Interface (Simpli�ed).

� An actor model.

� Any process can invoke arbitrary actions on

any other process.

� Upper Communication layer.

� Handles serialization, aggregation, etc.

� Parcelport layer (main focus).

� Actual send the parcel (serialized action

metadata and arguments) to the target rank.

� A parcel = one or multiple bu�ers.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 9



Introduction Background HPX Integration Experiments Conclusion Overview Design

HPX Communication Stack Overview

� HPX Application Interface (Simpli�ed).

� An actor model.

� Any process can invoke arbitrary actions on

any other process.

� Upper Communication layer.

� Handles serialization, aggregation, etc.

� Parcelport layer (main focus).

� Actual send the parcel (serialized action

metadata and arguments) to the target rank.

� A parcel = one or multiple bu�ers.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 9



Introduction Background HPX Integration Experiments Conclusion Overview Design

Threading and VCIs

� Multiple worker threads (C++ Thread) per process.

� All worker threads run an in�nite scheduling loop.

� Pick and execute tasks from the task queues.

� Periodically poll the network layer to drive communication.

� All threads can initiate communication and poll the network.

� MPI_Isend, MPI_Irecv, MPI_Test will be called simultaneously by multiple threads.

� Old MPI parcelport uses a single shared communicator.

� New MPIx parcelport adds an option to split the tra�c across multiple
communicators (VCIs).

� Roughly, every thread has a statically assigned communicator.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 10



Introduction Background HPX Integration Experiments Conclusion Overview Design

Threading and VCIs

� Multiple worker threads (C++ Thread) per process.

� All worker threads run an in�nite scheduling loop.

� Pick and execute tasks from the task queues.

� Periodically poll the network layer to drive communication.

� All threads can initiate communication and poll the network.

� MPI_Isend, MPI_Irecv, MPI_Test will be called simultaneously by multiple threads.

� Old MPI parcelport uses a single shared communicator.

� New MPIx parcelport adds an option to split the tra�c across multiple
communicators (VCIs).

� Roughly, every thread has a statically assigned communicator.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 10



Introduction Background HPX Integration Experiments Conclusion Overview Design

Threading and VCIs

� Multiple worker threads (C++ Thread) per process.

� All worker threads run an in�nite scheduling loop.

� Pick and execute tasks from the task queues.

� Periodically poll the network layer to drive communication.

� All threads can initiate communication and poll the network.

� MPI_Isend, MPI_Irecv, MPI_Test will be called simultaneously by multiple threads.

� Old MPI parcelport uses a single shared communicator.

� New MPIx parcelport adds an option to split the tra�c across multiple
communicators (VCIs).

� Roughly, every thread has a statically assigned communicator.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 10



Introduction Background HPX Integration Experiments Conclusion Overview Design

Threading and VCIs

� Multiple worker threads (C++ Thread) per process.

� All worker threads run an in�nite scheduling loop.

� Pick and execute tasks from the task queues.

� Periodically poll the network layer to drive communication.

� All threads can initiate communication and poll the network.

� MPI_Isend, MPI_Irecv, MPI_Test will be called simultaneously by multiple threads.

� Old MPI parcelport uses a single shared communicator.

� New MPIx parcelport adds an option to split the tra�c across multiple
communicators (VCIs).

� Roughly, every thread has a statically assigned communicator.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 10



Introduction Background HPX Integration Experiments Conclusion Overview Design

Request Polling and Continuations

� The parcelport layer will have many pending communication operations �>

A lot of MPI requests.

� Old MPI Parcelport:

� Maintain a C++ std::deque (Double-ended Queue) of pending requests.

� Periodically poll (MPI_Test) one request in the queue in a round-robin fashion.

� The deque is protected by a spinlock.

� Two approaches in MPIx Parcelport:

� Replicate the request pool with the communicator.

� Replace polling with Continuations.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 11



Introduction Background HPX Integration Experiments Conclusion Overview Design

Request Polling and Continuations

� The parcelport layer will have many pending communication operations �>

A lot of MPI requests.

� Old MPI Parcelport:

� Maintain a C++ std::deque (Double-ended Queue) of pending requests.

� Periodically poll (MPI_Test) one request in the queue in a round-robin fashion.

� The deque is protected by a spinlock.

� Two approaches in MPIx Parcelport:

� Replicate the request pool with the communicator.

� Replace polling with Continuations.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 11



Introduction Background HPX Integration Experiments Conclusion Overview Design

Request Polling and Continuations

� The parcelport layer will have many pending communication operations �>

A lot of MPI requests.

� Old MPI Parcelport:

� Maintain a C++ std::deque (Double-ended Queue) of pending requests.

� Periodically poll (MPI_Test) one request in the queue in a round-robin fashion.

� The deque is protected by a spinlock.

� Two approaches in MPIx Parcelport:

� Replicate the request pool with the communicator.

� Replace polling with Continuations.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 11



Introduction Background HPX Integration Experiments Conclusion Overview Design

Request Polling and Continuations

� The parcelport layer will have many pending communication operations �>

A lot of MPI requests.

� Old MPI Parcelport:

� Maintain a C++ std::deque (Double-ended Queue) of pending requests.

� Periodically poll (MPI_Test) one request in the queue in a round-robin fashion.

� The deque is protected by a spinlock.

� Two approaches in MPIx Parcelport:

� Replicate the request pool with the communicator.

� Replace polling with Continuations.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 11



Introduction Background HPX Integration Experiments Conclusion Overview Design

Request Polling and Continuations

� The parcelport layer will have many pending communication operations �>

A lot of MPI requests.

� Old MPI Parcelport:

� Maintain a C++ std::deque (Double-ended Queue) of pending requests.

� Periodically poll (MPI_Test) one request in the queue in a round-robin fashion.

� The deque is protected by a spinlock.

� Two approaches in MPIx Parcelport:

� Replicate the request pool with the communicator.

� Replace polling with Continuations.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 11



Experiments



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

MPI-level Multithreaded Ping-Pong

� 2 nodes; 1 MPI rank/node; N threads;

thread-to-thread ping-pong.

� 8-byte messages.

� Turn hybrid progress and continuation request

o�.

� Platform: SDSC Expanse (IB) and NCSA Delta

(SS-11).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 12



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

VCI Impact

Multi-VCI improves multithreaded message rate; Trade-o� between UCX/OFI.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 13



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Occasional Global Progress Cost

4.5x

Occasional global progress increases cross-VCI contention.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 14



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Continuation Request Overhead

1.6x

Current continuation request adds overhead at high thread counts.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 15



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

HPX Benchmarks

� Flood microbenchmark:

� 2 nodes, 1 process/node, 63 threads/process.

� Process 0 sends a �ood of messages to process 1.

� 8 bytes or 16 KiB payloads.

� OctoTiger application:

� Astrophysics simulation of binary star systems.

� Fast multipole method + adaptive mesh re�nement.

� 32 nodes, 2 processes/node, 63 threads/process.

� Comparing: standard MPI, LCI [0], MPIx, MPIx (w/o

continuation).

HPX �ooding

OctoTiger

[0] Yan et al. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task

System�The LCI parcelport of HPX." PAW-ATM (2023).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 16



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

HPX Benchmarks

� Flood microbenchmark:

� 2 nodes, 1 process/node, 63 threads/process.

� Process 0 sends a �ood of messages to process 1.

� 8 bytes or 16 KiB payloads.

� OctoTiger application:

� Astrophysics simulation of binary star systems.

� Fast multipole method + adaptive mesh re�nement.

� 32 nodes, 2 processes/node, 63 threads/process.

� Comparing: standard MPI, LCI [0], MPIx, MPIx (w/o

continuation).

HPX �ooding

OctoTiger

[0] Yan et al. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task

System�The LCI parcelport of HPX." PAW-ATM (2023).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 16



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

HPX Benchmarks

� Flood microbenchmark:

� 2 nodes, 1 process/node, 63 threads/process.

� Process 0 sends a �ood of messages to process 1.

� 8 bytes or 16 KiB payloads.

� OctoTiger application:

� Astrophysics simulation of binary star systems.

� Fast multipole method + adaptive mesh re�nement.

� 32 nodes, 2 processes/node, 63 threads/process.

� Comparing: standard MPI, LCI [0], MPIx, MPIx (w/o

continuation).

HPX �ooding

OctoTiger

[0] Yan et al. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task

System�The LCI parcelport of HPX." PAW-ATM (2023).

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 16



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Flood Microbenchmark

(a) 8-byte payloads. (b) 16KiB payloads.

MPIx (especially the usage of VCIs) closes gap vs LCI.
Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 17



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

OctoTiger

VCI keeps help, but too many VCIs hurt. Continuation bene�ts are modest.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 18



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

OctoTiger

VCI keeps help, but too many VCIs hurt. Continuation bene�ts are modest.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 18



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Why Too Many VCIs Hurt?

� Both LCI and MPIx show similar trends � some generic issue.

� Assumption: Lack of attentiveness due to heavy computation.

� Each VCI is polled by only one thread.

� If that thread is busy computing, the VCI is not polled often enough.

� Even if other threads are idle, they cannot help.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 19



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Why Too Many VCIs Hurt?

� Both LCI and MPIx show similar trends � some generic issue.

� Assumption: Lack of attentiveness due to heavy computation.

� Each VCI is polled by only one thread.

� If that thread is busy computing, the VCI is not polled often enough.

� Even if other threads are idle, they cannot help.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 19



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Random Progress Strategy

� To verify attentiveness assumption:

� Randomly select a VCI/device to

poll.

� Random polling helps LCI but hurts
MPIx

� VCI has coarser-grained locking than

LCI device.

� Tradeo� between attentiveness and

contention.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 20



Introduction Background HPX Integration Experiments Conclusion pingpong HPX Attentiveness

Random Progress Strategy

� To verify attentiveness assumption:

� Randomly select a VCI/device to

poll.

� Random polling helps LCI but hurts
MPIx

� VCI has coarser-grained locking than

LCI device.

� Tradeo� between attentiveness and

contention.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 20



Conclusion



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Conclusion

� VCI greatly boosts multithreaded performance.

� Continuation shows modest performance bene�ts.

� UCX and OFI shows di�erent multithreaded e�ciency, but both not ideal.

� Global progress hurts when multithreading.

� Continuation request brings noticeable overhead under heavily

multithreading.

� One VCI per thread may not be perfect: attentiveness problem.

� Some level of sharing is needed. We need better VCI implementation than

coarse-grained locks.

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 21



Introduction Background HPX Integration Experiments Conclusion

Q&A

Questions?

Examining MPI and its Extensions for Asynchronous Multithreaded
Communication

Jiakun Yan, Marc Snir and Yanfei Guo

jiakuny3@illinois.edu

Examining MPI and its Extensions for Asynchronous Multithreaded Communication J. Yan, M. Snir, Y. Guo 22


	Introduction
	Motivation
	Goals

	Background
	Threading
	VCI
	Continuation

	HPX Integration
	Overview
	Design

	Experiments
	pingpong
	HPX
	Attentiveness

	Conclusion

