
MPI Finally Needs to
Deal with Threads

Joseph Schuchart (Stony Brook University)

Joachim Jenke, Simon Schwitanski (RWTH Aachen)

EuroMPI/USA 2025, October 3, 2025, Charlotte, NC

1

2

• Thread Support added in MPI 2.1 (2008)

• Aspects of thread-safety is scattered across
the document (§3.5, §3.6, §6.14, §11.6)

The Current State of Threads in MPI

400+ comments

3

4

Thread-Compliant Implementations (§11.6.1)

MPI 5.0 §11.6.1 (I)

All MPI calls are thread-safe, i.e., two concurrently
running threads may make MPI calls and the
outcome will be as if the calls executed in some
order, even if their execution is interleaved.

MPI 5.0 §11.6.1 (II)

Blocking MPI calls will block the calling thread only, allowing
another thread to execute, if available. The calling thread will be
blocked until the event on which it is waiting occurs. Once the
blocked communication is enabled and can proceed, then the call
will complete and the thread will be marked runnable, within a
finite time. A blocked thread will not prevent progress of other
runnable threads on the same process, and will not prevent them
from executing MPI calls.

5

6

Same communicator, tag, and processes

Conflicting Messages

MPI 5.0 §3.5

If a process has a single thread of execution, then any two communications
executed by this process are ordered.
On the other hand, if the process is multi-threaded, then the semantics of
thread execution may not define a relative order between two send
operations executed by two distinct threads.
The operations are logically concurrent, even if one physically precedes the
other. In such a case, the two messages sent can be received in any order.
Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two
receives in either order.

7

A Tale of Two Interpretations (I)

Stronger Interpretation

The application may not
intentionally define an order.

Messages must still be matched
in the order they were posted.

Weaker Interpretation

MPI may treat any messages
sent by two threads as logically
concurrent. Their messages can

be matched in any order.

MPI 5.0 §11.6.1
It is the user’s responsibility to
prevent races when threads
within the same application
post conflicting communication
calls. The user can make sure
that two threads in the same
process will not issue conflicting
communication calls by using
distinct communicators at each
thread.

Does
”mpi_assert_allow_overtake”
only apply to single threads?

8

Are These Sends “Logically Concurrent?”

No demonstrated benefit of assuming
“Yes!”

9

10

What is Concurrency, Anyway?
MPI 5.0 §3.5

[…] if the process is multi-threaded, then
the semantics of thread execution may not
define a relative order between two send
operations executed by two distinct
threads.
The operations are logically concurrent,
even if one physically precedes the other. In
such a case, the two messages sent can be
received in any order. […]

Neglects
synchronization
outside of MPI

11

What is Concurrency, Anyway?
MPI 5.0 §3.5

[…] if the process is multi-threaded, then
the semantics of thread execution may not
define a relative order between two send
operations executed by two distinct
threads.
The operations are logically concurrent,
even if one physically precedes the other. In
such a case, the two messages sent can be
received in any order. […]

Neglects
synchronization
outside of MPI

Happens-Before Relation (→)

1. If event A occurs before event B on the same
parallel entity, then A → B.

2. If a parallel entity in event A sends a signal to
another parallel entity that blocks for it in an event
B, then A → B.

3. If A → B and B → C, then A → B.

Operations without a → relation are “logically
concurrent.”

→ can be determined through logical clocks

12

MPI is Part of a Large System

As long as the application can guarantee a
→ relation between two events, MPI

should respect the user’s perceived order.

Proposal for §11.6.1

If a process has a single thread of execution, then any
two communications executed by this process are
ordered, i.e., they have an established happens-before
relation.
On the other hand, if the process is multi-threaded, then
two operations are considered logically concurrent only
if the application has not established a happens-before
relation (i.e., strict ordering) between the two
messages. In such a case, the two messages sent can be
received in any order. […]
The same principle can be extended to MPI procedure
calls: two MPI procedure calls are considered “logically
concurrent” only if no happens-before relation
between them has been established.

13

Assumptions MPI Should Make

1. The application has established a happens-before
relationship between two MPI procedure calls. The
implementation must adhere to any ordering
imposed by the application.

2. The application may not have established a happens-
before relationship between two MPI procedure
calls. This means that two calls to MPI may happen
logically and even physically concurrent and the
implementation must be able to choose an order.

14

Conflicting Buffer Accesses
MPI 5.0 §3.6

A nonblocking send call indicates that the system
may start copying data out of the send buffer. The
sender should not modify any part of the send
buffer after a nonblocking send operation is
called, until the send completes.

A nonblocking receive call indicates that the
system may start writing data into the receive
buffer. The receiver should not access any part of
the receive buffer after a nonblocking receive
operation is called, until the receive completes.

MPI 5.0 §3.4

In a multi-threaded implementation of
MPI, the system may de-schedule a thread
that is blocked on a send or receive
operation, and schedule another thread for
execution in the same address space. In
such a case it is the user’s responsibility
not to modify a communication buffer
until the communication completes.
Otherwise, the outcome of the
computation is undefined.

Does not
mention
READ &
RECV.

Only applies
to blocking
operations!

15

Provide clear guidance on what buffer
accesses are conflicting and that their
outcome is undefined.

Proposal: Conflicting Accesses

Proposal: Definition of Conflicting Access

Two logically concurrent memory accesses are conflicting if
they access overlapping memory regions and at least one of
them potentially modifies the content in that region.
For example, such conflicting accesses may occur if a thread
reads the content of a buffer that is used by an incomplete
receive operation or if a thread writes to a buffer that is used
by an incomplete send operation.
Such conflicting accesses may occur with any MPI operation.
The outcome of such behavior is undefined.

16

17

Concurrent Request Completion
MPI 5.0 §11.6.2

A program in which two threads block, waiting on the same
request, is erroneous.
Similarly, the same request cannot appear in the array of
requests of two concurrent MPI {WAIT|TEST}{ANY|SOME|ALL}
calls.
In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

Concurrent
MPI_Test is

valid?

[…] be as if the calls executed in some order, even if their
execution is interleaved.

One is allowed to call MPI_TEST with a null or inactive request
argument. In such a case the procedure returns with flag = true
and empty status.

18

MPI_Request req;
MPI_Isend(…, &req);

#pragma omp parallel shared(req)
{

 int flag;
 while(!flag) MPI_Test(&req,…, &flag);

}

Concurrent Request Completion
MPI 5.0 §11.6.2

A program in which two threads block, waiting on the same
request, is erroneous.
Similarly, the same request cannot appear in the array of
requests of two concurrent MPI {WAIT|TEST}{ANY|SOME|ALL}
calls.
In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

Concurrent
MPI_Test is

valid?

[…] be as if the calls executed in some order, even if their
execution is interleaved.

One is allowed to call MPI_TEST with a null or inactive request
argument. In such a case the procedure returns with flag = true
and empty status.

19

MPI_Request req;
MPI_Send_init(…, &req);

MPI_Start(&req);

#pragma omp parallel shared(req)
{

 int flag;
 while(!flag) MPI_Test(&req,…, &flag);

}

Concurrent Request Completion
MPI 5.0 §11.6.2

A program in which two threads block, waiting on the same
request, is erroneous.
Similarly, the same request cannot appear in the array of
requests of two concurrent MPI {WAIT|TEST}{ANY|SOME|ALL}
calls.
In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

Concurrent
MPI_Test is

valid?

[…] be as if the calls executed in some order, even if their
execution is interleaved.

One is allowed to call MPI_TEST with a null or inactive request
argument. In such a case the procedure returns with flag = true
and empty status.What about

persistent
requests?

20

Allowing Concurrent Testing is a Bad Idea!

21

- CAS on every call to MPI_Test

- Thread takes ownership from variable holding
the handle

- Expensive to handle corner case

- New sentinel MPI_REQUEST_BUSY

- To avoid reading potentially free’d handle

- Why allow concurrent MPI_Test and not
MPI_Test[all|some|any]?

Atomically Resetting the Handle

22

Handle Equality:
When are two MPI_Request the same?

Proposal: Amended Handle Equality

In addition to their use by MPI calls for
object access, handles can participate in
assignments and comparisons.
Two handles refer to the same MPI object
if their type and value are identical.

MPI 5.0 §2.5.1

In addition to their use by MPI calls for
object access, handles can participate in
assignments and comparisons.

23

Functions w/ Guaranteed Thread-Safety

MPI 5.0 §11.6

Regardless of whether or not the MPI implementation is
thread compliant, a subset of MPI functions must
always be thread-safe. A complete list of such MPI
functions is given in Table 11.1. When a thread is
executing one of these routines, if another concurrently
running thread also makes an MPI call, the outcome will
be as if the calls executed in some order.

?

MPICH Info page for MPI_Info_set

The MPI standard defined a thread-safe interface but
this does not mean that all routines may be called
without any thread locks. For example, two threads
must not attempt to change the contents of the same
MPI_Info object concurrently. The user is responsible
in this case for using some mechanism, such as thread
locks, to ensure that only one thread at a time makes
use of this routine.

24

A Tale of Two Interpretations (II)

Open MPI (Wide)

All conflicting accesses to MPI
objects are protected by
MPI_THREAD_MULTIPLE

MPICH (Narrow)

Only non-conflicting accesses are
protected by

MPI_THREAD_MULTIPLE

25

Which Parts of MPI Should be Thread-Safe?

Global State (session state)

MPI Objects (communicators, requests, info…)

MPI Handles (MPI_Request, MPI_Comm)

26

Which Parts of MPI Should be Thread-Safe?

Global State (session state)

MPI Objects (communicators, requests, info…)

MPI Handles (MPI_Request, MPI_Comm)

27

MPI 5.0 §11.6.2

A program in which two threads block, waiting on the same
request, is erroneous.
Similarly, the same request cannot appear in the array of
requests of two concurrent MPI {WAIT|TEST}{ANY|SOME|ALL}
calls.
In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

28

• Allows for conflicting accesses to info objects.

• Would allow concurrent completion of persistent
requests.

• Would not permit concurrent Wait/Start.

Wide: Disallow Concurrent Release

Proposal: §11.6.2

A program in which two threads
concurrently pass the same MPI handle to
MPI procedures and one of them may
release the MPI object (i.e., replace the
MPI handle value) is erroneous. For
example, a non-persistent request can only
be completed once and a communicator
can only be freed once.

29

• Would prohibit concurrently setting info keys on
MPI objects

• Disallows concurrent test/wait/start since
completion is user-visible!

• Still allows concurrent P2P & RMA operations

Narrow: Allow Concurrent Modification of Non-
User Observable State

Proposal: §11.6.2

A program in which two threads
concurrently pass the same MPI handle to
MPI procedures and one of them may alter
the user-observable state of the MPI
object or the handle itself is erroneous.
For example, a request can only be
completed once and a communicator can
only be freed once.

The community should choose the level of
concurrency supported by MPI.

30

• Details of thread-safety in the standard are unclear.

• Identified inconsistencies in the standard and in implementations interpreting the standard

• Provided suggestions for improvements.

Conclusions

	Slide 1: MPI Finally Needs to Deal with Threads
	Slide 2: The Current State of Threads in MPI
	Slide 3
	Slide 4: Thread-Compliant Implementations (§11.6.1)
	Slide 5
	Slide 6: Conflicting Messages
	Slide 7: A Tale of Two Interpretations (I)
	Slide 8: Are These Sends “Logically Concurrent?”
	Slide 9
	Slide 10: What is Concurrency, Anyway?
	Slide 11: What is Concurrency, Anyway?
	Slide 12: MPI is Part of a Large System
	Slide 13: Assumptions MPI Should Make
	Slide 14: Conflicting Buffer Accesses
	Slide 15: Proposal: Conflicting Accesses
	Slide 16
	Slide 17: Concurrent Request Completion
	Slide 18: Concurrent Request Completion
	Slide 19: Concurrent Request Completion
	Slide 20: Allowing Concurrent Testing is a Bad Idea!
	Slide 21: Atomically Resetting the Handle
	Slide 22: Handle Equality: When are two MPI_Request the same?
	Slide 23: Functions w/ Guaranteed Thread-Safety
	Slide 24: A Tale of Two Interpretations (II)
	Slide 25: Which Parts of MPI Should be Thread-Safe?
	Slide 26: Which Parts of MPI Should be Thread-Safe?
	Slide 27
	Slide 28: Wide: Disallow Concurrent Release
	Slide 29: Narrow: Allow Concurrent Modification of Non-User Observable State
	Slide 30: Conclusions

