q\\\‘ Stony Brook University

MPI Finall
Deal with

Needs to
hreads

Joseph Schuchart (Stony Brook University)
Joachim Jenke, Simon Schwitanski (RWTH Aachen)

EuroMPI/USA 2025, October 3, 2025, Charlotte, NC

ooo

FAR
BEYOND 1

‘\\\‘ Stony Brook University

The Current State of Threads in MPI

| Loglca”y concurre nt' |Sn '-t #'] ’I 7 MPI_THREAD_SINGLE: Only one thread will execute.

MPI_THREAD_FUNNELED: The process may be multithreaded, but the application must

ensure that only the main thread makes MPI calls (for the definition of main thread,
© Closed f mpi-forum/mpi-...#748 (+1) ~ 400+ comments see MPI_IS_THREAD_MAIN on page 483).

MPI_THREAD_SERIALIZED: The process may be multithreaded, and multiple threads
manazanale MDLaslls but only one at a time: MPI calls are not made concurrently from
s (all MPI calls are “serialized”).

C ha n g e in th rea d Safety in M PI 4_1 #846 IPLE: Multiple threads may call MPI, with no restrictions.

tonic; i.e., MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED <

® Open VED < MPI_THREAD_MULTIPLE.
P 5 in MPI_COMM_WORLD may require different levels of thread sup-

Threading guarantees of MPI_User_function #64
Concurrent start and completion of persistent requests #858
¢S IRACS s ounuern

COMPUTATIONAL SCIENCE 2
© Open

Concurrent start and completion of persistent requests #3858

‘\\\‘ Stony Brook University

Concurrent use of request in start[all]] and completion functions

MPI_Irecv(&bufb, 1, MPI_INT, ©, 23, MPI_COMM_S
MPI_Wait(req, MPI_STATUS_IGNORE);
MPI_Test(req, &flag, MPI_STATUSES_IGNORE);

#pragma omp parallel sections

{

#pragma omp section
MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
MPI_Test(req, &flag, MPI_STATUSES_IGNORE);

} I__ true |
MPI_Send(&bufc, 1, MPI_INT, @, 42, MPI_COMM_SELF);
MPI_Wait(req, MPI_STATUSES_IGNORE);

MPI_Send cannot execute after MPI_Waitall

FRTeEmR o Section = MPI_Start executes before MPI_Waitall?
usleep(10ee0);

MPI_Start(req);
| bufa = @ | MPI_Send(&bufc, 1, MPI_INT, ©, 23, MPI_COMM_S

bufa = bufc |

MPI_Request_free(req);

— A blocked thread will not prevent progress of other runnable threads on the same
process, and will not prevent them from executing MPI calls.

— two concurrently running threads may make MPI calls and the outcome will be as if the
calls executed in some order, even if their execution is interleaved.

NHR for
Engineering Performance
C E S Science Computing

FAR :
\(CQ IHCS INSTITUTE FOR ADVANCED
B E o N D COMPUTATIONAL SCIENCE 3

‘\\\‘ Stony Brook University

Thread-Compliant Implementations (§11.6.1)

MPI 5.0 §11.6.1 ()
All MPI calls are thread-safe, i.e., two concurrently MP1 5.0 §11.6.1 (1)
running threads may make MPI calls and the

outcome will be as if the calls executed in some Blocking MPI calls will block the calling thread only, allowing

another thread to execute, if available. The calling thread will be
blocked until the event on which it is waiting occurs. Once the
blocked communication is enabled and can proceed, then the call
will complete and the thread will be marked runnable, within a
finite time. A blocked thread will not prevent progress of other
runnable threads on the same process, and will not prevent them
from executing MPI calls.

order, even if their execution is interleaved.

FAR)
@ Incs INSTITUTE FOR ADVANCED
BEYOND RIS,

‘\\\‘ Stony Brook University

'Logically concurrent’ isn't #11/

® Closed } mpi-forum/mpi-...#748 (+1) ~

Advice to users. The MPI| Forum believes the following paragraph is ambiguous and
may clarify the meaning in a future version of the MP| Standard. (End of advice to
users.)

On the other hand, if the MPI process is multithreaded, then the semantics of thread
execution may not define a relative order between two send operations executed by two dis-
tinct threads. The operations are logically concurrent |even if one physically precedes the
other. In such a case, the two messages sent can be received in any order. Similarly, if two
receive operations that are logically concurrent receive two successively sent messages,
then the two messages can match the two receives in either order.

Advice to implementors. The MP| Forum believes the previous paragraph is ambiguous
and may clarify the meaning in a future version of the MPI Standard. (End of advice
to implementors.)

FAR :
@ IHCS INSTITUTE FOR ADVANCED
BEYOND SRS

‘\\\‘ Stony Brook University

Conflicting Messages

Same communicator, tag, and processes

MPI 5.0 §3.5

If a process has a single thread of execution, then any two communications
executed by this process are ordered.

On the other hand, if the process is multi-threaded, then the semantics of
thread execution may not define a relative order between two send

operations executed by two distinct threads.

The operations are logically concurrent, even if one physically precedes the
other. In such a case, the two messages sent can be received in any order.
Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two
receives in either order.

FAR
BEYOND

Thread 1 MPI_Send MPI_Send
(T1)
Thread 2
(T2)
MPI : H : z
Library : S
MPI_Send

L J

Thread 1 —————__]

MPI_Send

Thread 2 : A

MPI

v

Y

Liorary MPI_Send
Overlap

L]
3 ; Incs INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE 6

‘\\\\ Stony Brook University

A Tale of Two Interpretations ()

Stronger Interpretation Weaker Interpretation

The application may not Does MPI may treat any messages

intentionally define an order. "mpi_assert_allow_overtake” sent by two threads as logically
Messages must still be matched only apply to single threads? concurrent. Their messages can

in the order they were posted. be matched in any order.

MPI 5.0 §11.6.1
It is the user’s responsibility to
prevent races when threads
within the same application
post conflicting communication
calls. The user can make sure
that two threads in the same
process will not issue conflicting

communication calls by using
distinct communicators at each @ IRACS INSTITUTE FOR ADVANCED .

FAR
BEYOND o
read.

‘\\\\ Stony Brook University

Are These Sends “Logically Concurrent?”

Thread 1 MPI_Send Imgnalﬂ'ﬁj

— | >
(1) : :
Thead2 5 % y MPLSend
Z Z I | ——»
(T2) i : wait(T1) : 5
MPI 5 , , .I :
Library — ' '

No demonstrated benefit of assuming

IIYeS !”

FAR .
@ Incs INSTITUTE FOR ADVANCED
BEYOND B SMAPANSED

‘\\\‘ Stony Brook University

Principle of least astonishment X 14 1anguages v

Article Talk Read Edit View history Tools

From Wikipedia, the free encyclopedia

"Least surprise" redirects here. For the principle of least surprise in the Bayesian brain hypothesis, see Free energy
principle and Bayesian approaches to brain function.

In user interface design and software design,['! the principle of least astonishment (POLA), also known as principle of
least surprise (POLS),[?] proposes that a component of a system should behave in a way that most users will expect it to
behave, and therefore not astonish or surprise users. The following is a corollary of the principle: "If a necessary feature
has a high astonishment factor, it may be necessary to redesign the feature."%]

The principle has been in use in relation to computer interaction since at least the 1970s. Although first formalized in the
field of computer technology, the principle can be applied broadly in other fields. For example, in writing, a cross-
reference to another part of the work or a hyperlink should be phrased in a way that accurately tells the reader what to
expect.

Origin [edit]

An early reference to the "Law of Least Astonishment" appeared in the PL/I Bulletin in 1967 (PL/l is a programming
language released by IBM in 1966).5] By the late 1960s, PL/I had become infamous for violating the law,®! for example
because, due to PL/I's precision conversion rules,!”! the expressions 25 + 1/3 and 1/3 + 25 would either produce
a fatal error, or, if errors were suppressed, 5.33333333333 instead of the correct 25.33333333333.[8191[10][11]

FAR :
\(CQ IHCS INSTITUTE FOR ADVANCED
B E o N D COMPUTATIONAL SCIENCE 9

‘\\\‘ Stony Brook University

What is Concurrency, Anyway?

MPI 5.0 §3.5

[...] if the process is multi-threaded, then
the semantics of thread execution may not
define a relative order between two send Neglects

operations executed by two distinct synchronization
threads outside of MPI

The operations are logically concurrent,
even if one physically precedes the other. In
such a case, the two messages sent can be
received in any order. [...]

FAR)
@ Incs INSTITUTE FOR ADVANCED
BEYOND ERASLDANER

10

‘\\\\ Stony Brook University

What is Concurrency, Anyway?

MPI 5.0 §3.5

[...] if the process is multi-threaded, then
the semantics of thread execution may not
define a relative order between two send
operations executed by two distinct
threads.

The operations are logically concurrent,
even if one physically precedes the other. In
such a case, the two messages sent can be
received in any order. [...]

FAR
BEYOND

Neglects
synchronization
outside of MPI

Happens-Before Relation (=)

If event A occurs before event B on the same
parallel entity, then A > B.

If a parallel entity in event A sends a signal to
another parallel entity that blocks for it in an event
B, then A = B.

If A= Band B =2 C, then A & B.

Operations without a = relation are “logically
concurrent.”

—> can be determined through logical clocks

L]
Incs INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

11

‘\\\‘ Stony Brook University

MPI is Part of a Large System

As long as the application can guarantee a
- relation between two events, MPI
should respect the user’s perceived order.

FAR
BEYOND

Proposal for §11.6.1

If a process has a single thread of execution, then any
two communications executed by this process are
ordered, i.e., they have an established happens-before
relation.

On the other hand, if the process is multi-threaded, then
two operations are considered logically concurrent only
if the application has not established a happens-before
relation (i.e., strict ordering) between the two
messages. In such a case, the two messages sent can be
received in any order. [...]

The same principle can be extended to MPI procedure
calls: two MPI procedure calls are considered “logically
concurrent” only if no happens-before relation
between them has been established.

‘\\\\ Stony Brook University

Thread 1 MPI_Send su;l'u_ll{TE]

T 5 \Rz >
[] Qq' MPI_Send

Assumptions MPI Should Make .. "% e

e ——
1. The application has established a happens-before Tt _
relationship between two MPI procedure calls. The N
implementation must adhere to any ordering (12)
imposed by the application. Ea _|:,

2. The application may not have established a happens-
before relationship between two MPI procedure Trreadt T T ———

MPI_Send

MPI_Send

calls. This means that two calls to MPI may happen N _MPiSend

logically and even physically concurrent and the L

implementation must be able to choose an order. i —
MPI_Send
Owerlap

FAR :
In CS INSTITUTE FOR ADVANCED
BEYOND

‘\\\‘ Stony Brook University

Conflicting Buffer Accesses

MPI 5.0 §3.6

A nonblocking send call indicates that the system

may start copying data out of the send buffer. The

sender should not modify any part of the send

buffer after a nonblocking send operation is Does not
called, until the send completes. mention

READ &
A nonblocking receive call indicates that the RECV.
system may start writing data into the receive
buffer. The receiver should not access any part of
the receive buffer after a nonblocking receive Only applies
operation is called, until the receive completes. to blocking

operations!

FAR
BEYOND

MPI 5.0 §3.4

In @ multi-threaded implementation of
MPI, the system may de-schedule a thread
that is blocked on a send or receive
operation, and schedule another thread for
execution in the same address space. In
such a case it is the user’s responsibility
not to modify a communication buffer
until the communication completes.
Otherwise, the outcome of the
computation is undefined.

L]
$; Incs INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE 14

‘\\\‘ Stony Brook University

Proposal: Conflicting Accesses

Provide clear guidance on what buffer

accesses are conflicting and that their
outcome is undefined. Proposal: Definition of Conflicting Access

Two logically concurrent memory accesses are conflicting if
they access overlapping memory regions and at least one of
them potentially modifies the content in that region.

For example, such conflicting accesses may occur if a thread
reads the content of a buffer that is used by an incomplete
receive operation or if a thread writes to a buffer that is used
by an incomplete send operation.

Such conflicting accesses may occur with any MPI operation.
The outcome of such behavior is undefined.

FAR :
Incs INSTITUTE FOR ADVANCED
BEYOND RRROAE

‘\\\‘ Stony Brook University

Change in thread safety in MPI 4.1 #846

Version 4.1 section 11.6.3 line 38

Multiple threads completing the same request. A program in which two threads block, waiting on the same request, is
erroneous. Similarly, the same request cannot appear in the array of requests of two concurrent MPI_{WAIT|TEST}{ANY]|
SOME|ALL} calls. In MPI, a request can only be completed once. Any combination of wait or test that violates this rule is

erroneous.

FAR :
@ IHCS INSTITUTE FOR ADVANCED
BEYOND

16

‘\\\‘ Stony Brook University

Concurrent Request Completion

MPI 5.0 §11.6.2

Concurrent
MPI_Test is
valid?

A program in which two threads block, waiting on the same
request, is erroneous.

Similarly, the same request cannot appear in the array of
requests of two concurrent MPI {WAIT|TESTH{ANY |SOME | ALL}
calls.

In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

[...] be as if the calls executed in some order, even if their
execution is interleaved.

One is allowed to call MPI_TEST with a null or inactive request
argument. In such a case the procedure returns with flag = true
and empty status.

FAR)
@ Incs INSTITUTE FOR ADVANCED
BEYOND ERASLDANER

17

‘\\\‘ Stony Brook University

Concurrent Request Completion

MPI 5.0 §11.6.2

Concurrer?t A program in which two threads block, waiting on the same
MPI—Teit - request, is erroneous.
Vel Similarly, the same request cannot appear in the array of
MPI Request req; requests of two concurrent MPI {WAIT|TESTH{ANY |SOME|ALL}
MPI_Isend(.., &req); calls.

In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

#pragma omp parallel shared(req)
{

[...] be as if the calls executed in some order, even if their
int flag; execution is interleaved.

while(!flag) MPI Test(&req,.., &flag);

One is allowed to call MPI_TEST with a null or inactive request
} argument. In such a case the procedure returns with flag = true
and empty status.

FAR)
@ Incs INSTITUTE FOR ADVANCED
BEYOND ERASLDANER

18

‘\\\‘ Stony Brook University

Concurrent Request Completion

Concurrent
MPI_Test is
valid?

MPI_Request req;
MPI_Send_init(.., &req);

MPI Start(&req);

#pragma omp parallel shared(req)
{

int flag;
while(!flag) MPI Test(&req,.., &flag);

What about

FAR persistent
BEYOND requests?

MPI 5.0 §11.6.2

A program in which two threads block, waiting on the same
request, is erroneous.

Similarly, the same request cannot appear in the array of
requests of two concurrent MPI {WAIT|TESTH{ANY |SOME | ALL}
calls.

In MPI, a request can only be completed once. Any
combination of wait or test that violates this rule is erroneous.

[...] be as if the calls executed in some order, even if their
execution is interleaved.

One is allowed to call MPI_TEST with a null or inactive request
argument. In such a case the procedure returns with flag = true
and empty status.

L]
(Q Incs INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

19

‘\\\\ Stony Brook University

Allowing Concurrent Testing is a Bad Idea!

Request | Request object at .
object Ooxfoobatl ”
A free()
Thread 1—— MPI_Test >
Read Write
variable A variable
h 4
Variable of type
MPI Request 0xfoobai1 MPI_REQUEST_NULL ——>»
Read JV Accessing deallocated
variable memory
Thread 2 MPI_Test >

Fig. 1. Two threads attempting to test the same non-persistent request handle. Thread
1 completes the request and frees the request object. Thread 2 holds a stale handle
to the freed request object because it did not see the completion of the request by
Thread 1.

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND SRS

‘\\\\ Stony Brook University

Atomically Resetting the Handle

- CASon every call to MPI_Test s Ry oteontis >
- Thread takes ownership from variable holding freed
the handle Thread 1 — MPI_Test — >
- Expensive to handle corner case variatig TYCAS| Jariable
- New sentinel MPI_REQUEST_BUSY Pl Rocios |0~ [ESSLBLSY WPLREQUEST UL |——>
- To avoid reading potentially free’d handle Thread 2 #Mpl_m fum_rem s
- Why allow concurrent MPI_Test and not Reas Retumas Retum

variable jncomplete complete

MPI_Test[all| some|any]?

FAR :
CQ IHCS INSTITUTE FOR ADVANCED
BEYOND SN,

‘\\\‘ Stony Brook University

Handle Equality:
When are two MPI Request the same?

MPI 5.0 §2.5.1 Proposal: Amended Handle Equality

" : In addition to their use by MPI calls for
In addition to their use by MPI calls for ! y " ,
! " : object access, handles can participate in
object access, handles can participate in . .
assignments and comparisons.

assignments and comparisons. .
g P Two handles refer to the same MPI object
if their type and value are identical.

FA :
(Q Incs INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE 22

R
BEYOND

‘\\\‘ Stony Brook University

Functions w/ Guaranteed Thread-Safety

Table 11.1: List of MPI Functions that can be called at any time within an MPI program,
including prior to MPI initialization and following MPI finalization

MPI_INITIALIZED
MPI 5-0 §11.6 MPI_FINALIZED
MPI_GET_VERSION

MPI_GET_LIBRARY_VERSION

Regardless of whether or not the MPIl implementation is W

thread compliant, a subset of MPI functions must sk

[WE-Y

NS REAT B

MPI_INFO_SET P

MEA _OCL-TE

always be thread-safe. A complete list of such MPI
functions is given in Table 11.1. When a thread is
executing one of these routines, if another concurrently
running thread also makes an MPI call, the outcome will
be as if the calls executed in some order.

MPI INFO_GET STRING

MPICH Info page for MPI_Info_set

The MPI standard defined a thread-safe interface but
this does not mean that all routines may be called
without any thread locks. For example, two threads

must not attempt to change the contents of the same
MPI_Info object concurrently. The user is responsible
in this case for using some mechanism, such as thread
locks, to ensure that only one thread at a time makes
use of this routine.

FAR
BEYOND

‘\\\‘ Stony Brook University

A Tale of Two Interpretations (ll)

Open MPI (Wide) MPICH (Narrow)

All conflicting accesses to MPI Only non-conflicting accesses are
objects are protected by protected by
MPI_THREAD_MULTIPLE MPI_THREAD_ MULTIPLE

FAR :
Incs INSTITUTE FOR ADVANCED
BEYOND RRRE

‘\\\‘ Stony Brook University

Which Parts of MPI Should be Thread-Safe?

Global State (session state)

MPI Objects (communicators, requests, info...)

MPI Handles (MPI_Request, MPI_Comm)

FAR)
B A0S s s
BEYOND SRS

‘\\\‘ Stony Brook University

Which Parts of MPI Should be Thread-Safe?

Global State (session state)

MPI Objects (communicators, requests, info...)

MPI Handles (MPI_Request, MPI_Comm)

FAR :
IACS i oo
BEYOND NSNS

‘\\\‘ Stony Brook University

MPI 5.0 §11.6.2

A program in which two ti 2ads b ck, waiting on the same
request, is erroneous.

Similarly, the same request 4 .\ .t appear in the array of

requests of two concurred . MPI {V. IT| TESTHANY |SOME | ALL}
calls.

In MPI, a request ¢« . only be complete. nce. Any
combination of # 4it or test that violates th. rule is erroneous.

FAR)
@ Incs INSTITUTE FOR ADVANCED
BEYOND ERASLDANER

27

‘\\\‘ Stony Brook University

Wide: Disallow Concurrent Release

FA
BE

Allows for conflicting accesses to info objects.

Would allow concurrent completion of persistent
requests.

Would not permit concurrent Wait/Start.

R
YOND

Proposal: §11.6.2

A program in which two threads
concurrently pass the same MPI handle to
MPI procedures and one of them may

release the MPI object (i.e., replace the
MPI handle value) is erroneous. For
example, a non-persistent request can only
be completed once and a communicator
can only be freed once.

L]
@ Incs INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

28

‘\\\‘ Stony Brook University

Narrow: Allow Concurrent Modification of Non-
User Observable State

Would prohibit concurrently setting info keys on

MPI objects
] _] Proposal: §11.6.2
* Disallows concurrent test/wait/start since
completion is user-visible! A program in which two threads

concurrently pass the same MPI handle to
MPI procedures and one of them may alter

 Still allows concurrent P2P & RMA operations

the user-observable state of the MPI
object or the handle itself is erroneous.
For example, a request can only be
completed once and a communicator can
only be freed once.

The community should choose the level of

concurrency supported by MPI.

FAR ,
@ Incs INSTITUTE FOR ADVANCED
BEYOND RRSOAE

‘\\\‘ Stony Brook University

Conclusions

* Details of thread-safety in the standard are unclear.

* |dentified inconsistencies in the standard and in implementations interpreting the standard

* Provided suggestions for improvements.

Advice to users. The MP| Forum
may clarify the meaning in a futur
users.)

s the following paragraph is ambiguous and
rsion of the MPI Standard. (End of advice to

FAR :
\(CQ IHCS INSTITUTE FOR ADVANCED
B E o N D COMPUTATIONAL SCIENCE

	Slide 1: MPI Finally Needs to Deal with Threads
	Slide 2: The Current State of Threads in MPI
	Slide 3
	Slide 4: Thread-Compliant Implementations (§11.6.1)
	Slide 5
	Slide 6: Conflicting Messages
	Slide 7: A Tale of Two Interpretations (I)
	Slide 8: Are These Sends “Logically Concurrent?”
	Slide 9
	Slide 10: What is Concurrency, Anyway?
	Slide 11: What is Concurrency, Anyway?
	Slide 12: MPI is Part of a Large System
	Slide 13: Assumptions MPI Should Make
	Slide 14: Conflicting Buffer Accesses
	Slide 15: Proposal: Conflicting Accesses
	Slide 16
	Slide 17: Concurrent Request Completion
	Slide 18: Concurrent Request Completion
	Slide 19: Concurrent Request Completion
	Slide 20: Allowing Concurrent Testing is a Bad Idea!
	Slide 21: Atomically Resetting the Handle
	Slide 22: Handle Equality: When are two MPI_Request the same?
	Slide 23: Functions w/ Guaranteed Thread-Safety
	Slide 24: A Tale of Two Interpretations (II)
	Slide 25: Which Parts of MPI Should be Thread-Safe?
	Slide 26: Which Parts of MPI Should be Thread-Safe?
	Slide 27
	Slide 28: Wide: Disallow Concurrent Release
	Slide 29: Narrow: Allow Concurrent Modification of Non-User Observable State
	Slide 30: Conclusions

