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Distributed Computing: Message Passing

* Distributed computing: Essential for solving complex computational problems
across various domains of science

* Message Passing Interface (MPI): A standard or de facto for efficient data
exchange in distributed computing

« Open MPI: An advanced open-source implementation of MPI
— https://github.com/open-mpi/ompi




Using Compression in MPl Communication

* A major performance factor in distributed applications is the amount of data
communicated among processes

* Network bandwidth is limited so it is important to minimize cost spent on
communication

« Compression decreases the amount of data transmitted over the network

— Lower bandwidth consumption
— Enhanced communication speed

* Investigate hiding compression cost by overlapping compression with other
operations (computation, communication)
— At communication time, detect if the compressed copy is still valid




Our Approach: userfaultfd

— What is userfaultfd?

 Linux kernel feature for handling faults in user-space processes

» Offers applications coarse to fine grain control over memory management
— How does it work?

» Register memory regions via userfaultfd system call

* When faults happen in the registered region, kernel will halt

» A separate process will be listening to the events and will handle fault
» Kernel resumes after fault is handled
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Our Approach: userfaultfd

 Application thread
— MPI register communication buffers
— Check whether a compressed counterpart is ready

« Compression thread

— Check if there are buffers that needed to be compressed from the compression
queue

— Put write protect on the memory region
— Compress

* Write handler thread
— Listen to write fault
— Take write protect off registered memory region
— Push corresponding communication buffers onto compression queue
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uffd Registration Strategy
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LZ4 Compression Algorithm
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Benchmarks and Applications

Benchmark Description
PENNANT A mini-app from CORAL-2 modeling unstructured mesh physics, focusing on Lagrangian and radiation
hydrodynamics. It serves as a compact proxy for large-scale multi-physics codes.
LBM Simulates fluid dynamics using the Lattice Boltzmann Method. It models mesoscopic flow behavior and
emphasizes parallel scalability and memory bandwidth.
SPH-EXA Implements the Smoothed Particle Hydrodynamics method for fluid and solid dynamics. Designed to
explore portability and scalability across HPC platforms.
Minisweep Models sweep-based transport used in neutron and radiative transfer simulations. Captures
communication-heavy patterns with directional dependencies.
LULESH A proxy for shock hydrodynamics on unstructured meshes, modeling core compute patterns of typical
hydrodynamics codes for performance benchmarking.

Benchmark Test Command
PENNANT leblanc mpirun -np 32 —bind-to hwthread —map-by hwthread ./build/pennant ./test/leblanc/leblanc.pnt
PENNANT leblancbig mpirun -np 32 —bind-to hwthread —map-by hwthread ./build/pennant ./test/leblancbig/leblancbig.pnt
LBM runhpc —config=config.cfg —action=ref 505.1bm_t
SPH-EXA runhpc —config=config.cfg —action=ref 532.sph_exa_t
Minisweep runhpc —config=config.cfg —action=ref 521.miniswp_t
LULESH mpirun -np 8 -bind-to hwthread —map-by hwthread ./lulesh2.0 -s ${Problem Size} -i 50
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Benchmarks and Applications Initial Performance with On-
the-fly Compression

LULESH
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*  On-the-fly LZ4 and LZ4 HC compression applied to the partial or whole blocking point-to-point
communication

» Time measured to the end of communication for partially non-blocking communication or measured
separately (send and receive) if it is blocking
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Application: LULESH

» Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics https://asc.linl.gov/codes/proxy-apps/lulesh

« LULESH approximates the hydrodynamics equations discretely
by partitioning the spatial problem domain into a collective of
volumetric elements defined by a mesh

What we really cared about

 LULESH is MPIl-enabled

 LULESH uses MPI communication (point-to-point)

« LULESH packs and communicates contiguous memory region
* LULESH reuses buffer for communicaton across iterations
 LULESH must be run with n*3 processes

» Varies problem size through command line
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Message Sizes Exchanged in LULESH

» Varied problem size in LULESH

 [teration count for each run kept
at 50

 LULESH’s data has a extremely
high chance of long sequence of
identical data, thus, high
compression ratio

« uffd version has hash collision,
causing a few buffers not to be
compressed for all iterations
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LULESH Performance
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Optimal Scenario for Compression Hiding (CH) Framework

Pack -> Send
L(mN

Recv -> Unpack
Pack -> Pack -> Pack ->
Send Send Send
» Choice of compress algorithm could
depend on the overhead of either pack or
fLEel Ukt NIEele network latency or network speed
. C_ost of compression Wl!l be_ hide behind
either pack or communication

\L(m/3/CR) \L(m/3/CR) \L(m/3/CR) CR=Compression Ratio

Recv -> Recv -> Recv ->
Unpack Unpack Unpack

Unpack with Decompression
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Compression Hiding (CH) Framwork Conclusions and Future Work

« Compression overhead may mitigate the benefit received from reduced
message size
* Introduced CH framework
« Has the potential to hide compression overhead by using free computing
resources
e Current framework does not compress every buffer
* Need better hash strategy to avoid collision in compression queue
« One write invalidates every buffer in the registration
« uffd registration merging -> fine-grained uffd registration (page based)
* Find balance among compression algorithm overhead, compression ratio,
pack overhead and communication overhead
« Challenge to find right application with characteristics
« Or modify the current communication pattern




Questions?
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