
On the Potential of Compression Hiding in 
MPI Applications

Yicheng Li, Michael Jantz

EuroMPI 2025



• Distributed computing: Essential for solving complex computational problems 
across various domains of science

• Message Passing Interface (MPI): A standard or de facto for efficient data 
exchange in distributed computing

• Open MPI: An advanced open-source implementation of MPI
— https://github.com/open-mpi/ompi

Distributed Computing: Message Passing



• A major performance factor in distributed applications is the amount of data 
communicated among processes

• Network bandwidth is limited so it is important to minimize cost spent on 
communication

• Compression decreases the amount of data transmitted over the network
— Lower bandwidth consumption

— Enhanced communication speed

• Investigate hiding compression cost by overlapping compression with other 
operations (computation, communication)
— At communication time, detect if the compressed copy is still valid

Using Compression in MPI Communication

3



— What is userfaultfd?

• Linux kernel feature for handling faults in user-space processes

• Offers applications coarse to fine grain control over memory management

— How does it work?

• Register memory regions via userfaultfd system call

• When faults happen in the registered region, kernel will halt

• A separate process will be listening to the events and will handle fault

• Kernel resumes after fault is handled

Our Approach: userfaultfd



• Application thread
— MPI register communication buffers

— Check whether a compressed counterpart is ready

• Compression thread
— Check if there are buffers that needed to be compressed from the compression 

queue

— Put write protect on the memory region

— Compress

• Write handler thread
— Listen to write fault

— Take write protect off registered memory region

— Push corresponding communication buffers onto compression queue

Our Approach: userfaultfd



Design

6



uffd Registration Strategy

Memory#1 #2 #3

Register Register Register?

Unregister Merge Registration

#2
Register

Contiguous, not overlapping

#4 #5

Register Register?

Unregister

#4
Register

Contiguous, overlapping

Overlap



LZ4 Compression Algorithm

8

• LZ4 is a lossless 

compression algorithm 

known for its 

exceptionally fast 

compression and 
decompression speeds

• LZ4 HC is the high-

compression variant of 

LZ4, it trades off 

compression speed for 
compression ratio. But 

decompression speed 

remains the same



Benchmarks and Applications

9



Benchmarks and Applications Initial Performance with On-
the-fly Compression

10

• On-the-fly LZ4 and LZ4 HC compression applied to the partial or whole blocking point-to-point 

communication

• Time measured to the end of communication for partially non-blocking communication or measured 

separately (send and receive) if it is blocking



Application: LULESH

11

• Livermore Unstructured Lagrangian Explicit Shock 

Hydrodynamics https://asc.llnl.gov/codes/proxy-apps/lulesh

• LULESH approximates the hydrodynamics equations discretely 

by partitioning the spatial problem domain into a collective of 

volumetric elements defined by a mesh

What we really cared about

• LULESH is MPI-enabled

• LULESH uses MPI communication (point-to-point)

• LULESH packs and communicates contiguous memory region

• LULESH reuses buffer for communicaton across iterations
• LULESH must be run with n^3 processes

• Varies problem size through command line



Message Sizes Exchanged in LULESH

12

• Varied problem size in LULESH

• Iteration count for each run kept 

at 50

• LULESH’s data has a extremely 

high chance of long sequence of 

identical data, thus, high 

compression ratio

• uffd version has hash collision, 

causing a few buffers not to be 

compressed for all iterations



LULESH Performance

13



Optimal Scenario for Compression Hiding (CH) Framework

14

Pack -> 

Send

Pack -> 

Send

Pack -> 

Send

Recv -> 

Unpack

Recv -> 

Unpack

Recv -> 

Unpack

Pack -> Send

Recv -> Unpack

L(m)

L(m/3) L(m/3) L(m/3)

Pack Pack Pack

Compression Compression Compression

CR=Compression Ratio

• Choice of compress algorithm could 

depend on the overhead of either pack or 

network latency or network speed

• Cost of compression will be hide behind 

either pack or communication

L(m/3/CR)

Unpack with Decompression

Recv -> 

Unpack

Recv -> 

Unpack

Recv -> 

Unpack

L(m/3/CR) L(m/3/CR)



Compression Hiding (CH) Framwork Conclusions and Future Work

15

• Compression overhead may mitigate the benefit received from reduced 

message size

• Introduced CH framework

• Has the potential to hide compression overhead by using free computing 

resources

• Current framework does not compress every buffer

• Need better hash strategy to avoid collision in compression queue

• One write invalidates every buffer in the registration

• uffd registration merging -> fine-grained uffd registration (page based)

• Find balance among compression algorithm overhead, compression ratio, 

pack overhead and communication overhead

• Challenge to find right application with characteristics

• Or modify the current communication pattern



Questions?


	Slide 1: On the Potential of Compression Hiding in MPI Applications
	Slide 2: Distributed Computing: Message Passing
	Slide 3: Using Compression in MPI Communication
	Slide 4: Our Approach: userfaultfd
	Slide 5: Our Approach: userfaultfd
	Slide 6: Design
	Slide 7: uffd Registration Strategy
	Slide 8: LZ4 Compression Algorithm
	Slide 9: Benchmarks and Applications
	Slide 10: Benchmarks and Applications Initial Performance with On-the-fly Compression
	Slide 11: Application: LULESH
	Slide 12: Message Sizes Exchanged in LULESH
	Slide 13: LULESH Performance
	Slide 14: Optimal Scenario for Compression Hiding (CH) Framework
	Slide 15: Compression Hiding (CH) Framwork Conclusions and Future Work
	Slide 16: Questions?

