On the Potential of Compression Hiding in
MPI Applications

Yicheng Li, Michael Jantz
EuroMPI 2025

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Distributed Computing: Message Passing

* Distributed computing: Essential for solving complex computational problems
across various domains of science

* Message Passing Interface (MPI): A standard or de facto for efficient data
exchange in distributed computing

« Open MPI: An advanced open-source implementation of MPI
— https://github.com/open-mpi/ompi

Using Compression in MPl Communication

* A major performance factor in distributed applications is the amount of data
communicated among processes

* Network bandwidth is limited so it is important to minimize cost spent on
communication

« Compression decreases the amount of data transmitted over the network

— Lower bandwidth consumption
— Enhanced communication speed

* Investigate hiding compression cost by overlapping compression with other
operations (computation, communication)
— At communication time, detect if the compressed copy is still valid

Our Approach: userfaultfd

— What is userfaultfd?

 Linux kernel feature for handling faults in user-space processes

» Offers applications coarse to fine grain control over memory management
— How does it work?

» Register memory regions via userfaultfd system call

* When faults happen in the registered region, kernel will halt

» A separate process will be listening to the events and will handle fault
» Kernel resumes after fault is handled

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Our Approach: userfaultfd

 Application thread
— MPI register communication buffers
— Check whether a compressed counterpart is ready

« Compression thread

— Check if there are buffers that needed to be compressed from the compression
queue

— Put write protect on the memory region
— Compress

* Write handler thread
— Listen to write fault
— Take write protect off registered memory region
— Push corresponding communication buffers onto compression queue

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Main Thread i
Y uffd Handler Thread Compression Thread
Add eeelver Listen to Faults Check Timestamp
D ™ MPIr'(I-')SS Get Fault Address Pop from LRU
e s I g n MP Source Corresponding Pair ComsrztsZ?;:n Size
Receive Count == Ready bit->0 :eady bit
Supposed Receive Count) v
yes
3 no Corresponding Corresponding
Match Tag and Source Returmn Registration WP off Registration WP on
MPI_Irecv ! ! !
Corresponding Pair Compression
D
M PI—I recv ecompress Added to LRU Update Compressed Size
Data Structures
MPI_Send Sender
MPI_Send Match/Register Buffer fe——7_| | Original/ Compressed Buffer Hashmap
J Buffer Pairs List
Compressed?
Latest to Earliest
yes uffd Registration
Send Compressed no List
Version
reorder
Send Original YN\
Version)
_set 1 LruqQueue |fofo o] PP,

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

uffd Registration Strategy

Contiguous, not overlapping Contiguous, overlapping
A A
o ————— 4 ——
Register Register Register? Register Register?
. . _<
Unregister ~— Merge Registration Unregister
Register Register
#2 o -l #4

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

LZ4 Compression Algorithm

e LZ4 is a lossless Compression Speed Decompression Speed Compression Ratio
compression algorithm 30000 | 30000 - 232 r
known for its 20000 20000
exceptionally fast 0 1%
compression and 10000 1 10000 1 501 o
decompression speeds 301 — 40%
« LZ4 HC is the high- - . 2] o
compression variant of 30001 30001 10 - — 70%
LZ4, it trades off 2000, 2000, iE " oo
compression speed for ool . 31 ——
compression ratio. But 21
decompression speed co0! 500 e
remains the same o 1 2 3 a 5 1 2 3 4 5 1 2 3 s
size (Bytes) le7 size (Bytes) le7 size (Bytes) le7

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Benchmarks and Applications

Benchmark Description
PENNANT A mini-app from CORAL-2 modeling unstructured mesh physics, focusing on Lagrangian and radiation
hydrodynamics. It serves as a compact proxy for large-scale multi-physics codes.
LBM Simulates fluid dynamics using the Lattice Boltzmann Method. It models mesoscopic flow behavior and
emphasizes parallel scalability and memory bandwidth.
SPH-EXA Implements the Smoothed Particle Hydrodynamics method for fluid and solid dynamics. Designed to
explore portability and scalability across HPC platforms.
Minisweep Models sweep-based transport used in neutron and radiative transfer simulations. Captures
communication-heavy patterns with directional dependencies.
LULESH A proxy for shock hydrodynamics on unstructured meshes, modeling core compute patterns of typical
hydrodynamics codes for performance benchmarking.

Benchmark Test Command
PENNANT leblanc mpirun -np 32 —bind-to hwthread —map-by hwthread ./build/pennant ./test/leblanc/leblanc.pnt
PENNANT leblancbig mpirun -np 32 —bind-to hwthread —map-by hwthread ./build/pennant ./test/leblancbig/leblancbig.pnt
LBM runhpc —config=config.cfg —action=ref 505.1bm_t
SPH-EXA runhpc —config=config.cfg —action=ref 532.sph_exa_t
Minisweep runhpc —config=config.cfg —action=ref 521.miniswp_t
LULESH mpirun -np 8 -bind-to hwthread —map-by hwthread ./lulesh2.0 -s ${Problem Size} -i 50

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Benchmarks and Applications Initial Performance with On-
the-fly Compression

LULESH
. N LULESH Problem Size 200
PENNANT leblanc PENNANT leblancbig «106LBM D2Q37 x104 SPH-EXA %105 Minisweep Problem Size 30 %101
8
Send
Il Recv
Il Pack
I Unpack
.| Il Compression
Decompression
Il Data over the wire
Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC . Default LZ4 LZ4 HC . Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC
%103 %108 %1013 %1011 x1012 %107 4 x10°
- 1.5 4 mk0 1.00 1.00) 1.00 . 1.00 1.00 1.00
(] -
£ 1,001 3
o 156X 1.60x 61
@ 0.75 A 4 - 24
n 47
o 0.50 A 2.70x
® 21 24 1
0 0.25 A
0004 0 0.00 0.0 00 93.19x 170.40x | | 109.57x 12096x | | 217.29% 220.60x
Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC Default LZ4 LZ4 HC

* On-the-fly LZ4 and LZ4 HC compression applied to the partial or whole blocking point-to-point
communication

» Time measured to the end of communication for partially non-blocking communication or measured
separately (send and receive) if it is blocking

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Application: LULESH

» Livermore Unstructured Lagrangian Explicit Shock
Hydrodynamics https://asc.linl.gov/codes/proxy-apps/lulesh

« LULESH approximates the hydrodynamics equations discretely
by partitioning the spatial problem domain into a collective of
volumetric elements defined by a mesh

What we really cared about

 LULESH is MPIl-enabled

 LULESH uses MPI communication (point-to-point)

« LULESH packs and communicates contiguous memory region
* LULESH reuses buffer for communicaton across iterations
 LULESH must be run with n*3 processes

» Varies problem size through command line

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Message Sizes Exchanged in LULESH

» Varied problem size in LULESH

 [teration count for each run kept
at 50

 LULESH’s data has a extremely
high chance of long sequence of
identical data, thus, high
compression ratio

« uffd version has hash collision,
causing a few buffers not to be
compressed for all iterations

3.5

Total Data Sizes (Bytes)
= = N N w
o u o u o

o
u

o
o

1e9

1 —@— default
—&— overlapping
4 —+— sequantial

/

pd

ey

—r*—/{

25

50

75

100 125 150 175 200

Problem Size

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

LULESH Performance

FOM (z/s)

FOM

”Mﬁtﬂw

4000
2000
50 100 150 200
Problem Size
Cumulative Wait Duration
20
v
£ 10
]:
0 ; ; ;
50 100 150 200
Problem Size
Cumulative Compression Duration
0 M
T 5
=
=
0 ettt e e
50 100 150 200

Problem Size

Time (s)

Time (s)

Time(

Cumulative Comm Duration

t..'_
50 ;
R !
/
25 L SV
O n ¥

100

50 150 200
Problem Size
Cumulative Unpack Duration
20 A
10
0 - : : :
50 100 150 200
Problem Size
Cumulative Decompression Duration
1.0 /‘-ﬁ{¢
0.5
0.0 i T

50

100
Problem Size

150

200

Cumulative Send Duration

>
— 50 O"
wn /
Q2 ®
) I\
£ 25 %%
= s ®
O _ T
50 100 150 200
Problem Size
Cumulative Total Duration
r'r
-."_n— 50 R 1l
(] 7 /
£ 8 AW
= /
}.
0 - : :
50 100 150 200
Problem Size
Application Runtime
[
-@- default
v 500 1 —— sequantial
g —— overlapping
=

50

100
Problem Size

150

200

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Optimal Scenario for Compression Hiding (CH) Framework

Pack -> Send
L(mN

Recv -> Unpack
Pack -> Pack -> Pack ->
Send Send Send
» Choice of compress algorithm could
depend on the overhead of either pack or
fLEel Ukt NIEele network latency or network speed
. C_ost of compression Wl!l be_ hide behind
either pack or communication

\L(m/3/CR) \L(m/3/CR) \L(m/3/CR) CR=Compression Ratio

Recv -> Recv -> Recv ->
Unpack Unpack Unpack

Unpack with Decompression

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Compression Hiding (CH) Framwork Conclusions and Future Work

« Compression overhead may mitigate the benefit received from reduced
message size
* Introduced CH framework
« Has the potential to hide compression overhead by using free computing
resources
e Current framework does not compress every buffer
* Need better hash strategy to avoid collision in compression queue
« One write invalidates every buffer in the registration
« uffd registration merging -> fine-grained uffd registration (page based)
* Find balance among compression algorithm overhead, compression ratio,
pack overhead and communication overhead
« Challenge to find right application with characteristics
« Or modify the current communication pattern

Questions?

	Slide 1: On the Potential of Compression Hiding in MPI Applications
	Slide 2: Distributed Computing: Message Passing
	Slide 3: Using Compression in MPI Communication
	Slide 4: Our Approach: userfaultfd
	Slide 5: Our Approach: userfaultfd
	Slide 6: Design
	Slide 7: uffd Registration Strategy
	Slide 8: LZ4 Compression Algorithm
	Slide 9: Benchmarks and Applications
	Slide 10: Benchmarks and Applications Initial Performance with On-the-fly Compression
	Slide 11: Application: LULESH
	Slide 12: Message Sizes Exchanged in LULESH
	Slide 13: LULESH Performance
	Slide 14: Optimal Scenario for Compression Hiding (CH) Framework
	Slide 15: Compression Hiding (CH) Framwork Conclusions and Future Work
	Slide 16: Questions?

